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The concentration distribution resulting from a continuous point source in a fluid 
with a steady linear variation in velocity is distorted by the flow at distances greater 
than (K/Eb)',  where K is the molecular diffusion coefficient and Eb is a characteristic 
shear rate. The distribution has two distinct shapes depending on the number of 
principal axes of fluid strain that are expansive and the relative magnitude of 
irrotational and rotational shears. For irrotational flows a single expansive principal 
axis of strain results in a tube-like distribution, while two expansive axes results in 
a disk-like distribution. Approximate analytical solutions, derived by neglecting 
diffusion along the expansive axes, agree well with concentrations calculated by 
numerically convolving the exact instantaneous source solution. The effect of fluid 
vorticity is generally to reorient the distribution away from the principal axes of 
strain and to reduce the asymmetry of the concentration distribution. Aside from 
reorientation, the concentration distribution varies little until the vorticity 
approaches a critical value defined by a kinematic condition for equilibrium 
orientation in the presence of rotation. For vorticity greater than the critical value, 
the concentration distribution becomes axisymmetric around the axis of rotation. 
Application of these results to numerical simulations of isotropic turbulence suggests 
that tubes are more common than disks and that vorticity exceeds the critical value 
in at  least 25% of the fluid. 

1. Introduction 
In this article we consider the concentration distribution resulting from a 

continuous point source of soluble mass into an incompressible fluid with a steady 
velocity that is a homogeneous linear function of the distance from the point of input 
and which may be either irrotational or rotational. Of particular interest are the 
qualitative and quantitative features of the concentration distribution far enough 
from the source to be affected by the fluid motion but sufficiently close that the 
assumptions of steady homogeneous shear are valid for real flows. The analysis 
presented here will be applicable to mass transfer from a finite-sized particle as long 
as the PBclet number based on the particle diameter and the shear rate is small 
(Batchelor 1979). 

In general we seek solutions to the advection-diffusion equation, given here in the 

(1.1) 

where C is the dissolved constituent concentration, x is the position vector from the 
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steady-state form as aC a 2  c 
U i - = K -  

ax, ax,axl7 
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point of mass input, and K is the molecular diffusion coeEcient. The boundary 
conditions are C + O  as r + w ,  1 

dC 
dr 

4 n r 2 ~ - = F  as r+O,  

where F is the steady mass input rate and r = ( x i x i ) f  is the distance from the point 
source. The general linear form for the relative fluid velocity U is 

U, = G ,  xj = (Eij  + Qij) xi, 
where the velocity gradient tensor G is split into symmetric and antisymmetric 
parts, E and S2 respectively, subject to  the continuity constraint for an incompressible 
fluid E,, = Gii = 0. The elements of the velocity gradient tensor G are assumed to be 
constant in time and space. 

Little previous work has been done on the concentration distributions for 
continuous point sources in flows with general linear velocity distributions. 
Analytical solutions are available for a continuous point source in a steady uniform 
stream (Carslaw & Jaeger 1959) and numerical solutions for continuous sources in 
two-dimensional shear flows have been presented (Csanady 1973 ; Okubo & Karweit 
1969). Turfus (1986) examined concentration distributions near steady line sources 
in reversing shear flow and developed exact solutions as infinite series and/or 
integrals. 

In  contrast, the problem of diffusion of instantaneous sources in isotropic 
turbulence has a long theoretical and experimental history. The diffusion of heat 
spots in irrotational sheared flow was investigated by Townsend (1951 a) whose 
equations for heat spot dispersal agreed well with experiments using hot-wire 
anemometry. The problem of diffusion of instantaneous sources in simple sheared 
flows was solved first by Novikov (1958) and again by Elrick (1962). Lumley (1972) 
investigated the effects of vorticity on the dispersal of point sources in two- 
dimensional shearing flow. The instantaneous source solution for a general linear flow 
was given by Batchelor (1979) and by Foister & Van de Ven (1980). The dispersion 
of contaminant clouds has been analysed for a variety of shear flows including the 
effects of boundaries and unsteadiness in the flow (Smith 1981, 1982). 

In this article we discuss several new results relating to  the concentration 
distribution surrounding a continuous source in a general linear shear flow with and 
without vorticity. Approximate analytical solutions for the irrotational case are 
derived and used to assess how the decrease in concentration along the principal axes 
of shear is influenced by the magnitudes of the principal shears. We show 
theoretically that the effect of fluid rotation on the concentration distribution 
depends on whether the vorticity is less than or greater than a critical value 
determined by the velocity gradient tensor. These results are evaluated quan- 
titatively using a straightforward numerical convolution of the exact instantaneous 
source solution. The critical vorticity concept is used to infer a qualitative picture of 
concentration distributions surrounding point sources in isotropic turbulence. 

2. General solution for steady point sources 
The concentration for any location x surrounding the point of input for a 

continuous source can be given by convolution of the solution for an instantaneous 

C(X) = I t e x p  ( - 3;; xp xq) dt, (2np "I source as 
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where I is the second moment tensor for an instantaneous pulse defined as (Tennekes 
& Lumley 1972) 

xp xq C(x, t)  dz,dx, dx,. (2.2) 

A generalized Gaussian concentration distribution with second moments defined by 
/ is a solution for the instantaneous point release provided that / satisfies the 
following ordinary differential equation (Batchelor 1979 ; Foister & Van den Ven 
1980) 

where bpq is the Kronicker delta. 
Concentration distributions around continuous sources for general velocity 

gradient tensors were calculated using a numerical integration of (2.1), obtained by 
summing the contributions of a finite number of instantaneous pulses. The time 
evolution of the second moment tensor /, (2.3), for each instantaneous pulse was 
solved with an explicit finite-difference method. The time step of the finite-difference 
approximation was limited to be no more than 0.5% of minimum value of l/Gi5. 
Sensitivity analysis was conducted to  determine the minimum number of pulses 
necessary for the numerical convolution and the evolution of the second moment 
tensor / was compared with the analytical solution for irrotational shear, (3.2) 
(Townsend 1951 a).  The numerically derived concentration distribution for mo- 
tionless diffusion was compared with the analytical solution C = F / 4 n ~ r  (Carslaw & 
Jaeger 1959). 

3. Point sources in steady irrotational shear 
In the special case where the rotational, antisymmetric component of the velocity 

gradient tensor is zero (Q = 0) ,  the velocity gradient tensor given as G = E will be 
symmetric and can be simplified as 

where E, is the extension rate along the symmetric tensor's ith principal axis, whose 
unit position vector is E(,).  For irrotational shearing, with velocity gradients steady 
in time, the second moment tensor of an instantaneous pulse, 1, is (Townsend 1951 a) 

The transformation to the principal axis for G, defined by 5(,), also diagonalizes / ( t ) ,  
thus the principal axes of strain are also the principal axes for the instantaneous 
pulse. The dimensions of the pulse increase exponentially with time along expansive 
axes (El > 0) and approach a constant along compressive axes, that is I ,  = - K / E i  for 
t B l / - E 3  and E3 < 0. The concentration distribution for a continuous release can 
be found by integrating the instantaneous source solution as 

C(x) = 1 ]dt. (3.3) 
[IlSl(exp2E,t- l)] 
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FIQURE 1. Qualitative features of concentration distributions for continuous point sources in 
steady homogeneous shear flows. The dark sphere at the origin has a radius of ( K / E J ~  that indicates 
the size of the diffusive region unaffected by the fluid motion. The lighter shading concentration 
contours distorted by shearing flow. The arrows indicate the fluid streamlines. (a) Tube : E ,  > 0, E, 
and E,  c 0. (6) Disk: 2, and E ,  > 0, E,  < 0. 

The form of the solution to (3.3) depends on the signs and magnitudes of the shear 
components. To simplify the specification of these components we a$pt the 
following conventions, noting that xi-l EI = 0 from continuity, and (E,E,)i =I= 0 for 
sheared flows. Because of the flow field’s symmetry about the origin we choose, with 
no loss of generality, the principal axes so that El > E ,  > E,, which requires that 
E ,  > 0 and E,  < 0. The shear tensor can then be completely specified with two 
parameters, which are 

(3.4) 

3 

I-1 

where E, specifies the strength of the shearing while s is a symmetry factor such that 
s = 1 is an expansive shear flow axisymmetric about x, and s = - 1  is a 
compressive shear flow axisymmetric about x l .  
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3.1. Qualitative features of the continuous point source solution 
Two distinct concentration distributions result for continuous sources depending on 
the number of expansive axes. When the flow is compressive along two axes (s < 0) ,  
concentration gradients along these axes are steeper than along the single expansive 
axis, resulting in concentration contours distorted by the flow into tube-like 
structures (figure 1 a). A structure similar to the tube results when the shear along x, 
is absent (s = 0) and is referred to as a diffusive tube since the transport in the x, 
direction is diffusive. When the flow is expansive along x1 and x, (s > l), the 
distribution becomes flattened along the compressive x, axes, and disk-like 
concentration contours are produced (figure l b ) .  For both tubes and disks the 
concentration distributions are oriented along the principal axes of strain. Near the 
source, where the relative fluid velocity is small, the concentration contours are 
spherical (figure 1) .  The shape and orientation of concentration distributions for 
instantaneous point sources show a similar behaviour (Townsend 1951 a) .  This 
similarity is not surprising because in shearing flows elements of the second moment 
tensor grow exponentially in time, thus only a narrow range of times contribute to 
the convolution integral describing the concentration distribution for a continuous 
source (3.3). 

4. Approximate analytical solutions in the sheared region of irrotational 
flow 

The qualitative and quantitative features of the concentration distributions and 
the convolution integral from which they arise suggest that approximate analytical 
equations can be developed for the region where transport by the shear flow 
dominates diffusive transport. Within this sheared region we assume that the flux of 
material away from the source is due entirely to advection along the expansive axes 
and that the times contributing to the convolution integral, (2.1), will be greater 
than l/-Ei, where Ei is the strain rate along compressive axes. Thus concentration 
distributions along compressive axes will be approximately Gaussian with a variance 
of K /  - E,.  Approximate analytical solutions for the concentration distributions 
can then be found by writing a flux equation using the assumed form of the 
concentration distribution. 

Concentration distributions are normalized by defining the characteristic 
quantities 

x,=(:y, co=- Fl@ 
4nd ’ 

where the length x, is the Batchelor scale where diffusive and advective dispersal are 
of the same magnitude (Batchelor 1959), and the concentration Co is the concentration 
that would result at  r = xo in the complete absence of motion. The following sections 
give approximate analytical solutions for each of the shear patterns described earlier. 

4.1. Tube 
For a tube El = ED, E,, E, < 0. The assumed concentration distribution is 

C(x) = C,exp [,: -+- 3 , 



t

where C, is the concentration along the expansive x1 axis. The flux equation is given 
as 

F = 2J/~m~l(xl)C'(x)dx2dx3 = 2E1x1 C c ( x l ) ~ ~ ~ m m e x p [ ~ + ~ ] d x 2 d x 3 .  E x2 E x2 (4.3) 

Integration of the flux relation in the two compressive flow directions results in the 
following equation for the centreline concentration 

Along the tube centreline, concentrations fall off as for the case without motion, 
i.e. independent of the rate of strain. Concentration levels are, however, dependent 
on the symmetry of the shearing in compressive directions, as represented by s. 
Axisymmetric tubes (s = - 1)  have centreline concentrations equal to  one-half the 
value for a continuous source in motionless fluid. Comparison with the exact 
numerically derived solution for an axisymmetric tube shows that the concentration 
distribution given by (4.2) and (4.4) agrees well in the region where advective effects 
are dominant ( r  > xo) (figure 2). 

4.2. Diffusive tube 
In the two-dimensional pure shear flow, El = (E,,O, -Eb), instantaneous pulses 
elongate exponentially along x1 and diffusively along x2. The continuous source 
solution should have a similar character such that, unlike the tube, the lengthscale 
in the x2 direction should grow diffusively as x1 increases. With moments for 
instantaneous pulses growing exponentially along xl, we expect a logarithmic 
increase in the x2 lengthscale along xl. The following equation for the concentration 
C(x) results by modifying the assumed concentration distribution of the tube to 
account for the diffusive growth in the moments in the x2 direction: 

where again C, gives the concentration along the x1 axis. Equating the integral of the 
concentration distribution over x2 and x3 with the flux from the continuous source 
as in (4.3) produces the following equation for the centreline concentration of a 
diffusive tube distribution : 

X 1 

lxll [In ( E,xf T)] 1 
C,(X,) = c o 4  1 '  

The approximate analytical solution agrees well with the concentration distribution 
along the diffusive tube centreline (figure 2a). I n  the x2 direction the concentration 
distribution deviates from that predicted by (4.5) in the region x2 > x1 (figure 2b)), 
but the deviation is insignificant to the flux analysis since the concentration in this 
region is several orders of magnitude below the centreline value. By assuming that 
x2 % x1 and x3 = 0 the convolution integral (3.3) can be integrated directly to give 

which agrees well with the exact numerical solution in the region where x2 > x1 
(figure 26). 

C = Co exp ( - x2/x0), (4.7) 
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FIGURE 2 .  Kormalized concentration C/Co vs. normalized position x / x o  (see (4.1) for characteristic 
scales xo and Co).  Symbols give numerical solution of the convolution integral (2.1), while the solid 
lines give the approximate analytical solutions (I 4). The dashed line gives the motionless diffusion 
analytical solution C/Co = x o / x i .  ( a )  Distributions along the line ( q / x 0 ,  0, 0) for: s = 1.0 (+), 
s = 0.75 ( x ), s = 0.5 (a), s = 0 (IJ), s = - 1.0 (A). ( b )  Distributions along the line (10, x2 /xo ,  0) for: 
8 = - 1.0 (A), s = 0 (0) (solid line on right gives approximate analytical solution for: 2, > q); and 
along the line (0, x 2 / x o ,  0) for: s = 0.5 (a), s = 0.75 ( x ), s = 1.0 (+). ( c )  Distributions albng the line 
(10, 0, 2 , / X o )  for: 8 = - 1.0 (A), 6 = 0 (o), 8 = 0.5 (a), 6' = 0.75 ( X  ), 8 = 1.0 (+). 
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4.3. Disk 

An analogous flux analysis for a disk requires that the flow be axisymmetric in the 
(xl, 2,)-plane, that is El = E, = = @', and s = 1. In  this case the flux equation 
can be written as 

(4-8) F = iEb I! cd(l) exp [F] E3 4 dx,, 
-'x 

where C, is the concentration in the axisymmetric (xl, x,)-plane and 1 = (xi+xi)i is 
the distance from the source in the (xl x,)-plane. Integrating across x3 leads to  the 
following equation for the concentration distribution : 

For non-axisymmetric disks (0 < s < 1) our flux analysis is indeterminate because 
we are unable to state a priori the shape of concentration contours in the (x,,xz)- 
plane. We can, however, find the concentration distribution along either expansive 
axis by direct integration of (3.3) with x1 = 0 or x2 = 0, which results in the following 

(4.10) 

Comparison of (4.10) and (4.9) with the previous equations shows that in the sheared 
region for both tubes and disks the concentration decreases along an expansive axis 
i as xFJEb. The concentration distribution along the second expansive axis in a non- 
axisymmetric disk can be found using (4.10) with a change of indices. The 
approximate analytical solution (4.10) agrees well with the concentration dis- 
tributions derived numerically for several axisymmetric and non-axisymmetric disks 
(figure 2) in the region where advective transport dominates diffusive transport. 

While we cannot describe analytically the shape of concentration contours in the 
expansive plane of non-axisymmetric disks, we can show that the size of a contour 
is unaffected by changes in the asymmetry of shearing. Assuming advective 
transport in the expansive (xl, x,)-plane, the outward flux across a contour (C = C,) 
can be written as 

with the integration limits set for a particular concentration contour according to  
(4.10). The unknown function f and its inverse f describe the shape of the contour 
in the (xl, z,)-plane such that C(x,, f(xl)), 0 = C,. The flux equation (4.11) has already 
been integrated in the x direction using the assumed concentration distribution for 
axisymmetric disks. Integrating (4.11), noting that E, = El+E, = -E3,  results in 
the following relation for the area of the concentration contour in the (xl, %,)-plane : 

(4.12) 

For a given intensity of shear E,  and a flux rate F, the area bounded by a contour 
in the (xl,x,)-plane is independent of the asymmetry of the shearing, though the 
shape of the contour will be affected by changes in the symmetry factor. The volume 



Continuous source in homogeneous shear 103 

bounded by a contour is also approximately independent of the symmetry factor 
since the concentration distributions are flattened along the compressive xg direction 
and the strength of the shearing in this direction is unaffected by changes in the 
symmetry factor. 

5. Continuous point sources in steady rotational shear flows 
In this section we describe the shape and orientation of concentration distributions 

when the shear flow includes rotational components. We examine the deformation of 
instantaneous pulses using a kinematic model justified by the observation, based on 
(2.3) that the eigenvectors of the moment tensor for a pulse in any linear flow field 
are real and orthogonal. Deformation of a pulse can therefore be seen as the 
superposition of an extensional motion that changes the lengthscales of the pulse 
together with an angular motion that reorients the pulse. Pulses in rotational flows 
are turned from the principal axes of strain so that the extensional motion varies in 
time. When the rotation is weak relative to the shearing, instantaneous pulses rotate 
to an equilibrium orientation where the angular motion is zero (Lumley 1972). 
Extension rates along the equilibrium orientation axes are equal to a weighted 
average of the extension rates along the principal axes of strain. For strongly 
rotational flows the concentration distribution is the same as that resulting from an 
axisymmetric, irrotational flow with an axis of symmtry along the rotation axis 
(Batchelor 1979). The extension rate along the axis of symmetry for the equivalent 
irrotational flow is the component of the rate of strain tensor in the direction of the 
rotation vector for the strongly rotational flow. 

To analyse the effects of rotation we examine how changing the strength of the 
rotation component changes the dimensions of a concentration contour when viewed 
from the equilibrium orientation. Concentration distributions are calculated using 
the convolution integral for a series of velocity gradient tensors, each with an 
identical shear component, and with rotation components that vary in intensity but 
not in orientation. This analysis is done initially with a simple specification of 
rotation, where the rotation axis is aligned with a principal axis of strain. The 
criterion for weak rotation, which requires that an equilibrium orientation exists, is 
analysed for this simple rotational case and later for a general velocity gradient 
tensor. We then look at  a more general rotational shearing flow where the rotation 
axis is not aligned with a principal axis of strain. In both examples we show that 
the critical rotation rate is the key parameter which determines the effect of rotation 
on the shape of the concentration distributions. 

5.1. Concentration distributions with rotation along a principal axis of strain 
With the rotation axis aligned along a principal axis of strain i t  is possible to derive 
simple equations describing the angular location of the equilibrium orientation 
relative to the principal axes of strain and the extension rates along the equilibrium 
orientation. The rotational shearing flow analysed has a fixed shear component 
(S = -0.6) and a vorticity component of varying intensity w that is aligned with x2 
such that o = (0, w ,  0). The equilibrium orientation can be found for this special case 
by determining the directions in which the angular component of the motion is zero. 
The equilibrium orientation turns from the principal axes around the x2 axis by an 
angle a, such that 
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FIGURE 4. Normalized distances (zi/zo) from the source to the concentration level C/C, = 0.01 
along each rotated coordinate axis us. the normalized vorticity u2/uerit for the vorticity vector (0, 02, 

0) and principal strain rates (Eb, -0.3Eb, -0.7Eb. The horizontal dashed line represents the 
normalized distance to C / C ,  = 0.01 along expansive axes for the strong rotation limit that is 
equivalent to an axisymmetric shearing with principal strain rates (0.3Eb, - 0.6Eb, 0.3Eb). 

The vorticity can be normalized to the critical value for the existence of an 
equilibrium orientation (wCrit = El - E3) as 

For weak rotation (w* < l) ,  the extension rates along the two rotated axes of the 
equilibrium orientation, xi and xi, can be specified as 

(5.3) 

(5.4) 

Ei/Eb = -fa+ ( 1  -alsl) (1 - w $ ) i ,  
EjIE, = - $8 - (1 -fIsl) (1 - w$)" 

The extension rate along x; (E;) is unaffected by vorticity since the rotation axis is 
aligned with x2 (Batchelor 1979). 

The distance to a constant concentration level (C /C ,  = 0.01) in the sheared region 
was calculated along each equilibrium orientation axis for both weak and strong 
rotation. The irrotational shear component (s = - 0.6) produces a concentration 
distribution that is a non-axisymmetric tube with a centreline aligned with x1 (figure 
3). For strong rotation cases (w* > 1 )  the distance to  C/C, = 0.01 was calculated at 
a = 45O. Normalized concentrations and distances (see (4.1)) were calculated using 
the irrotational shear component. The concentration distribution for the strong 
rotation limit is an axisymmetric disk (s = 1.0) with an axis of symmetry along x2 
(figure 3). The characteristic shear rate for the strong rotation limit (Eb) is less than 
the characteristic shear rate for the irrotational shear case (Eb/Eb = 0.3). 

The effect of the rotation on the distributions is small for most of the weak rotation 
region (w* < 1) see (figures 3 and 4). For normalized rotation rates below 
approximately 0.95, the dimensions of the concentration contour change little from 
the irrotational pattern (figure 4). The orientation of the Concentration distribution 
does change significantly, however, since the equilibrium orientation axes xi and xi 
rotate around x2 by 33.2" at w* = 0.9. As the vorticity intensity is increased past the 
critical value, the dimensions of the concentration contour change quickly and by 



106 J .  D .  Bowen and K.  D .  Stolzenbach 

w* = 2.0 the long axis of the contour is only twice the length of the other axis in the 
plane perpendicular to  the rotation vector. At higher rotation rates the distribution 
approaches the limiting axisymmetric distribution with the axis of symmetry along 
the rotation axis (figure 4). 

I n  this example the effect of rotation is to turn a tube-like distribution (figure 3 a )  
into a disk-like one (figure 3 4 .  The critical rotation rate for the existence of an 
equilibrium orientation is shown to be the key parameter in describing the shape of 
the distributions. I n  the next section we derive the criterion for this critical rotation 
rate for a general velocity gradient tensor. 

5.2. A general conditions for the critical rotation rate 
No simple geometrically based relationship for the critical rotation rate is possible for 
a general vorticity vector. Nonetheless we can use information on the velocity 
gradient tensor to determine the critical rotation rate for any general linear flow 
described by (1.3). An equilibrium orientation must be described by a set of real 
vectors, which in turn requires that the extension rates along the equilibrium 
orientation be real, since our solution must have no imaginary part. Since the 
equilibrium orientation and the eigenvectors of the velocity gradient tensor form 
right and left eigenvector pairs (Lumley 1972), then all three eigenvalues of the 
velocity gradient tensor must also be real when an equilibrium orientation exists. 

A characteristic polynomial giving the eigenvalues of G is y3 + ay  + b = 0, where 
a = a(wi w i )  - i (Ei  E i ) ,  and b = - (El  E ,  E,  + iEi wi w i ) .  The coordinate system used is 
formed by the principal axes of strain. The roots of the polynomial are the 
eigenvalues of the velocity gradient tensor G. The condition that all the roots of the 
polynomial are real can be used to  provide the following condition for weak rotation : 

Ei E,  -8(wi wi) > 3 x 2f (El  E, E,  +aE, W ,  wi);. (5.5) 
For a given irrotational shear component and direction for the vorticity vector, a 

normalized rotation rate can be defined as w* = (wiw$/wC,  where w, is the 
magnitude of the vorticity vector that makes (5 .5)  an equality. When the rotation 
is weak (w* < I ) ,  an instantaneous pulse will rotate to a stable orientation and 
subsequent deformation of the pulse will be determined by the components of the 
rate of strain tensor in the equilibrium orientation. At rotation rates above the 
critical value (w* > I ) ,  the velocity gradient tensor will have one real eigenvalue 
with two imaginary eigenvalues that are complex conjugates, giving an oscillatory 
behaviour to the solution for an instantaneous pulse. The orientation of the pulse will 
oscillate around an orientation specified by the eigenvectors corresponding to the 
real part of the velocity gradient’s eigenvalues a t  a frequency equal to the rotation 
rate. At high rotation rates (w* % 1)  the behaviour of the pulse will be independent 
of the rotation rate and the pulse will deform in an axisymmetrical fashion with an 
axis of symmetry aligned with the vorticity vector. 

5.3. Concentration distributions for an arbitrary rotation vector 
We can now analyse rotational effects on continuous sources for any combination of 
shear and rotation components. As in the earlier example we examine the changes in 
the shape of a concentration contour (CIC, = 0.01) as the rotation intensity is 
increased. The shear component is fixed (s = -0.6) with a vorticity vector of 
constant direction (0, w ,  w ) ,  and a variable intensity w .  Vorticity is normalized to  the 
critical vorticity value which is calculated using (5 .5)  for s = -0.6 so that 
wCrit = O.73Eb. The irrotational limit is the same as in the earlier case, producing a 
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FIQURE 5. Extension rates along each rotated coordinate axis C;, normalized by the irrotational 
strain intensity E, vs. the normalized vorticity w/wCrit for the vorticity vector (0, w ,  w )  with 
principal strain rates (Eb, -0.3Eb, -0.7Eb). 
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FIQURE 6. Normalized distances (xI/C,) from the source to the concentration level C/C, = 0.01 
along each rotated coordinate axis vs. the normalized vorticity w/wCrlt for the vorticity vector 
(0, w ,  w )  and principal strain rates (E,,  -O.3Eb, -O.7Eb). The horizontal dashed line represents the 
normalized distance to C/C, = 0.01 along expansive axes for the strong rotation limit that is 
equivalent to an axisymmetric shearing with principal strain rates (0.5Eb, O.5Eb, - E b ) .  

tube-like distribution for irrotational strain. The concentration distribution expected 
in the limit of strong rotation is again an axisymmetric disk (s = l . O ) ,  but with 
Ek/E, = 0.5 rather than 0.3. 

As in the previous case, the asymmetry in the shearing rates (figure 5) and in the 
concentration distributions (figure 6 )  remains nearly unchanged until the vorticity 
intensity approaches the critical value. An analysis of the velocity gradient tensor in 
the coordinate system formed by the equilibrium orientation showed the tensor to 
have a special form that was used to calculate the extension rates (figure 5). (The 
analysis is in an Appendix available from the authors or the editor.) Increases in 
vorticity beyond the critical value change dramatically the shape of the distribution 



108 J .  D. Bowen and K.  D .  Stolzenbach 

and the ratio of lengthscales is reduced to below 2.0 by the time the vorticity is twice 
the critical value. Further increases in vorticity produce concentration distributions 
approaching the limiting strong rotation case. The limiting lengthscale in this case 
is slightly larger than in the first case because the strength of the axisymmetric 
shearing is stronger (Eb/Eb = 0.5 us. 0.3). 

6. Continuous sources in homogeneous turbulence 
In turbulent flows the assumption that the velocity gradient tensor is homogeneous 

is approximately satisfied if the region of interest is smaller than the Kolmogorov 
microscale ( v3 /e ) i .  Since the shear rate E,  is of order ( E / V ) ; ,  this constraint may be 
expressed as r / x O  < ( V / K ) ; .  The Schmidt number ( v / K )  is of order 1000 for small- 
molecular-weight compounds dissolved in water, which limits the range of interest to  
dimensionless distances of approximately 30. For typical organic compounds with 
larger molecular weights (1500 g/mole) the region of interest may be as much as 
three times larger. 

Our steady-state analysis is appropriate if the timescale of variation in the shear 
rate is long relative to the Kolmogorov timescale. Lumley (1972) has hypothesized 
that the shearing lasts for a time equal to the Lagrangian integral timescale. The 
ratio of the Lagrangian integral timescale to  the Kolmogorov timescale has been 
estimated to be of order Rt (Corrsin 1963), where R, is the Reynolds number 
calculated using the Taylor microscale A.  There is, however, some doubt about this 
hypothesis (Monin & Yaglom 1975), though recent particle tracking experiments 
show Lagrangian integral timescales in excess of Kolmogorov timescales (Sato &, 
Yamamoto 1987). Unfortunately the Reynolds numbers of these experiments are not 
high enough to be a true test. The assumption of steady, homogeneous shear is 
essentially that used by Batchelor (1959) in analysing small-scale variations in scalar 
quantities. 

Recent numerical simulations of homogeneous turbulence examining correlations 
between shear and vorticity (Kerr 1985) and alignment between component of shear 
and vorticity (Ashurst et a l .  1987) can be used in conjunction with our analysis to 
give a qualitative description of the shape of continuous point source concentration 
distributions in isotropic turbulence. Ashurst et al. (1987) examined the velocity 
gradient tensor a t  16 384 uniformly distributed points in space for isotropic 
turbulence with R, = 82.9. To characterize the strain component they define a 
normalized principal strain rate nearly equivalent to our symmetry factor s (see 
(3.4)) as /3 = E, 2/6/(E,E,)i z s. 

In  locations with viscous dissipation below the median rate they found that 
positive and negative values for p are equally likely and 75Y0 of the p values are 
between /3 = 0.5 and p = -0.5. When there are two positive principal strain rates 
(p > 0) the flow is strongly rotational (average w/wCrit = 7). The majority of these 
locations (z 20 % of total) have a vorticity vector aligned with the axis of the 
intermediate principal strain rate ( E 2 ) ,  resulting in tube-like concentration 
distributions for point sources axisymmetric about the vorticity vector. Extension 
rates along the vorticity vector are significantly below the average shear rate because 
of the relatively weak dissipation and the particular alignment of the vorticity 
vector. I n  locations with two compressive axes (p  < 0) the rotation is not aligned 
with either compressive axis, thus these locations also have tube-like concentration 
distributions. 

Ashurst et al. report that locations with viscous dissipation above the median value 
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have two positive principal axes (p > 0). These high-dissipation regions have an 
average vorticity level near the average for the entire fluid, thus we expect some 
concentration distributions shaped as non-axisymmetric disks in weakly rotating 
locations (p > 0, w < wCrit). However, Kerr (1985) discovered regions of high 
vorticity in vortex tubes associated with regions of strong shear and with the single 
compressive strain axis perpendicular to the vortex tube axis. Neither Kerr nor 
Ashurst et al. give the relative magnitude of the shear and vorticity components in 
the vortex tubes so we cannot determine whether the flow is strongly or weakly 
rotational. With the observed alignment of strain and vortical components, however, 
a strongly rotational vortex tube results in tube-like concentration distributions 
aligned with the vorticity vector while weakly rotational flow results in disk-like 
concentration distributions. 

Summarizing the results for the entire turbulent fluid, we expect that tube-like 
concentration distributions are more common than disks even though regions with 
,!3 > 0 occupy a majority of the fluid (Ashurst et ad. report 75%). The preponderance 
of locations with two positive principal strain rates is consistent with a similar 
analysis by Townsend (1951 b) .  Of interest, however, is the relative strength of the 
vorticity and its alignment with a positive principal strain rate, which results in 
axisymmetric tube-like concentration distributions for strong rotation even though 
the irrotational shear alone would result in disk-like distributions. Strongly 
rotational axisymmetric tubes occupy at  least half of the locations with viscous 
dissipation below the median rate ( x 20 % of total volume) and are also expected in 
strongly rotational vortex tubes with strain rates significantly above the median 
level. Disk-like concentration distributions are found only in locations where 
viscous dissipation is above the median value and the rotation is weak relative to the 
shear (< 50% of total volume). Flatness factors for shear and vorticity are 
significantly above uncorrelated levels (Kerr 1985), so that median levels of fluid 
motion, and consequently the distortion of concentration distributions by fluid 
motion, are below estimates based on average conditions. 
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